The significance of follow-up in patients with dysmorphic features: a case from clinical practice

Mariya Levkova, Milena Stoyanova, Mari Hachmeriyan

Department of Medical Genetics, Medical University Varna, Varna, Bulgaria
Laboratory of Medical Genetics, St. Marina Hospital, Varna, Bulgaria

ABSTRACT

Background. Kabuki syndrome is a rare disorder, that is characterized by typical facial dysmorphism, hypotonia, delay in intellectual and motor development.

Case report. We present a case of a girl in whom polycystic left kidney was prenatally established. Born prematurely in 37 weeks by C section due to oligohydramnios. After birth, atresia of the anus with fistula, cysts in the left and reduced dimensions of the right kidney, were further established.

A normal female karyotype was found and targeted sequencing analysis was conducted on a panel of 81 genes associated with renal abnormalities – no pathogenic variants were detected. The child was then followed up by its general practitioner. At the age of 2 years, she was again referred for genetic counseling, which revealed the following dysmorphic signs – long eye palpebral fissuras with ectropion of the lower eyelid, sparsed lateral eyebrows, depression of the nasal bridge, brachydactyly and others characteristic of Kabuki’s syndrome. The conducted molecular genetic analysis confirmed the clinical diagnosis – a likely pathogenic variant in the KMT2D gene was established.

Conclusions. Certain pathognomonic facial may not present at birth and only appear after a few years. Therefore, monitoring of the evolution of dysmorphic traits is required.

Keywords: Kabuki syndrome, KMT2D, dysmorphic features, genetic counseling

INTRODUCTION

The detection of a certain genetic disorder depends both on the physical examination and the molecular-genetic analysis. Approximately 30–40% of these conditions are associated with specific dysmorphic features, and some of them may be highly indicative of a specific disorder [1]. However, the typical dysmorphic traits may not be present at birth and develop later in life, which makes it difficult to diagnose a genetic disorder right away from the first patient’s visit.

Therefore, it is not surprising that the average time for diagnosing a patient with a rare disorder is around 6 years from the first symptoms, and in the meantime, the patient would receive several wrong diagnoses [2].

Nevertheless, an early diagnosis is crucial since it makes it possible to start screening for the underlying condition’s related issues, such as cardiovascular or malignant ones [3].

Kabuki syndrome (KS) is a rare disorder, which was first reported in Japan in 1980s [4]. It was named like this because of the distinctive facial features that mimic the makeup of performers in Japanese Kabuki theater [4]. It is caused by pathogenic variants in the genes KMT2D or KDM6A and its...
prevalence is around 1 in 32,000 [5]. The typical dysmorphic features of KS are long palpebral fissures with eversion of the lateral third of the lower eyelid and two or more of the following: arched and broad eyebrows with the lateral third displaying notching or sparseness; short columella with depressed nasal tip; large, prominent, or cupped ears, and persistent fingertip pads [6, 7]. Additional symptoms are short stature, microcephaly, cleft palate, lip pits, hearing loss, congenital heart defects, feeding difficulties and immunological disorders [4, 7].

Despite the striking facial features, typical for KS, the diagnosis might be delayed because these features develop in the first several years of life [4].

We present a case of a patient with KS and the course of the diagnostic process.

CASE REPORT

The patient is a 2-year-old girl born from first pregnancy. A polycystic kidney and one cyst in the other kidney were noted in the 35th gestational week. The girl was born prematurely per C section in the 37th week due to oligohydramnios, weight – 3200 gr, length – 50 cm. Anal atresia with a fistula, multiple cysts in the left kidney, decreased size of the right kidney were noted after the birth of the baby. The girl was clinically diagnosed with autosomal recessive polycystic kidney disease and was referred to genetic counseling. The karyotype of the girl was normal – 46, XX. Targeted sequencing for 81 genes, associated with kidney anomalies and polycystic kidney disease was performed, but no pathogenic or likely pathogenic variants were reported. After that, the child was followed by its general practitioner.

At two years of age, the girl was again referred to genetic counseling due to the presence of dysmorphic features and intellectual disability. The girl presented with long palpebral fissures with eversion of the lower eyelid, sparse lateral eyebrows, depressed nasal bridge, anteverted nares, low set ears with overfolded helix and linear creases of the left earlobe, high-arched palate, brachydactyly, ulnar deviation of both thumbs, and persistent fingertip pads (Figure 1). The suspected diagnosis was Kabuki syndrome, based on the similarity with the cardinal features of KS.

Targeted sequencing of 1902 genes reported a likely pathogenic variant p.(Arg1709Hisfs*25) in KMT2D gene, which was associated with KS. In our case there was no family history of other affected members and the pathogenic variant occurred de novo.

The child was referred to a pediatric department, specialized in patients with rare disorders and is regularly screened for the manifestation of additional symptoms, typical for KS.

DISCUSSION

KS is a heterogeneous disorder, which involves various systems. The phenotypic features vary over time and the cardinal dysmorphism may manifest later in life, like it was in our case. That is why the patients should be reevaluated for the presence of
variable immune deficiency. There is also an in
patients with KS may present later with common
Hypogammaglobulinemia is a typical finding and
KDM6A participate in B-lymphocyte differentiation.
this could be explained
ism in boys are described [10, 12]. KS is associated
stature with unknown etiology, obesity, cryptorchid
hydronephrosis, renal dysplasia, and horseshoe kid
40% of afflicted people with KS have present with
typical (described in our case). More than
kidneys is typical for KS, however, cysts are not a
involvement of the
case in our instance, anorectal anomalies such as
Chronic diarrhea is also described [4]. As was the
poor feeding, which may be due to severe reflux.
A congenital heart defect affects about 80% of
people with KS, the most common being atrial septal
defect, ventricular septal defect and coarctation of
aorta [4]. Patients with KS typically present with
poor feeding, which may be due to severe reflux.
chronic diarrhea is also described [4]. As was the
case in our instance, anorectal anomalies such as
atresia of the anus are possible. Involvement of the
kidneys is typical for KS, however, cysts are not a
typical finding (described in our case). More than
40% of afflicted people with KS have present with
hydronephrosis, renal dysplasia, and horseshoe kid
Endocrine issues include hypothyroidism, short
stature with unknown etiology, obesity, cryptorchid
ism in boys are described [10, 12]. KS is associated
with immune dysfunction. This could be explained
by the fact that the responsible genes KMT2D and
KDM6A participate in B-lymphocyte differentiation.
Hypogammaglobulinemia is a typical finding and
patients with KS may present later with common
variable immune deficiency. There is also an in-
creased risk of autoimmune disorders such hemo-
lytic anemia, vitiligo, and immune thrombocytope-
nia [4,10]. KS may also predispose to malignant
diseases and the patients should be regularly
screened for such complications [4].

Over one-third of the affected individuals have
ocular abnormalities, such as blue sclerae, strabismus,
nystagmus, nocturnal lagophthalmos and dry
eye, refractive error, and coloboma [4]. Hearing loss
affects up to 50% of affected individuals, and it may
be linked to chronic otitis media [4]. Numerous
dental anomalies are also described in more than 60%
of KS patients, most frequently hypodontia, widely
spaced teeth, irregularly formed teeth, missing lat-
eral, upper, and lower incisors, and malocclusion
[4].

Differential diagnosis of Kabuki syndrome in-
volves distinguishing it from other conditions with
some overlapping features such as CHARGE syn-
drome, 22q11.2 deletion syndrome, IRF6-related dis-
orders, Branchiootorenal syndrome, Hypermobile
Ehlers-Danlos syndrome, Larsen syndrome,
Hardikar syndrome. However, Kabuki syndrome
is characterized by distinct facial features, which
could help identify this diagnosis [6,7].

Regular evaluations are required for cardiac, en-
docrinologic, immunologic, renal, and other prob-
lems following the initial diagnosis of Kabuki syn-
drome. Hearing and vision testing should be
performed, as well [6,7].

CONCLUSION

Some of the dysmorphic syndromes are charac-
terized by typical facial features, which are pathog-
nomonic. However, it is possible that they are not
present at birth, but develop after a few years. This
requires sustainable monitoring of undiagnosed pa-
tients and, if necessary, reanalysis of the clinical di-
agnosis.

Thorough follow-up of phenotypic traits and
their documentation are key in the evaluation of pa-
tients with rare dysmorphic traits.

Conflict of interest: none declared
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
Conceptualization, M.L and M.S.;
Financial support: none declared
Author’s contributions:
REFERENCES

